首先确定灯的功率、每天照明时间及最长阴雨(不能充电的)天数,来确定所需要的电量容量。蓄电池选择容量时应考虑放电深度和蓄电池电压略高于负载(灯)工作电压,蓄电池工作环境情况选择蓄电池类型(铅酸或胶体)。太阳电池主要性能 电池效率 由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000 KWm-2)作为测试电池效率的标准光源。太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。 ◎ 25℃,AM0条件下太阳电池效率 电池类型 面积(cm2) 效率(%) 电池结构 一般Si太阳电池 64cm2 14.6 单结太阳电池 先进Si太阳电池 4cm2 20.8 单结太阳电池 GaAs太阳电池 4cm2 21.8 单结太阳电池 InP太阳电池 4cm2 19.9 单结太阳电池 GaInP/GaAs 4cm2 26.9 单片叠层双结太阳电池 GaInP/GaAs/Ge 4cm2 25.5 单片叠层双结太阳电池 GaInP/GaAs/Ge 4cm2 27.0 单片叠层三结太阳电池 ◎ 聚光电池 GaAs太阳电池 0.07 24.6 100X GaInP/GaAs 0.25 26.4 50X,单片叠层双结太阳电池 GaAs/GaSb 0.05 30.5 100X,机械堆叠太阳电池 空间太阳电池在大气层外工作,在近地球轨道太阳平均辐照强度基本不变,通常称为AM0辐照,其光谱分布接近5800K黑体辐射光谱,强度1353mW/cm2。因此空间太阳电池多采用AM0光谱设计和测试。 空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受限制的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。 抗辐照性能 空间太阳电池在地球大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。 太阳电池的可靠性 光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。 Si太阳电池 硅太阳电池是最常用的卫星电源,从1970年代起,由于空间技术的发展,各种飞行器对功率的需求越来越大,在加速发展其他类型电池的同时,世界上空间技术比较发达的美、日和欧空局等国家,都相继开展了高效硅太阳电池的研究。以日本SHARP公司、美国的SUNPOWER公司以及欧空局为代表,在空间太阳电池的研究发展方面领先。其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目前在轨的许多卫星应用的是这种类型的电池。 到了70年代中期,COMSAT研究所提出了无反射绒面电池(使电池效率进一步提高)。但这种电池的应用受到限制:一是制备过程复杂,避免损坏PN结;二是这样的表面会吸收所有波长的光,包括那些光子能量不足以产生电子-空穴对的红外辐射,使太阳电池的温度升高,从而抵消了采用绒面而提高的效率效应;三是电极的制作必须沿着绒面延伸,增加了接触的难度,使成本升高。 80年代中期,为解决这些问题,高效电池的制作引入了电子器件制作的一些工艺手段,采用了倒金子塔绒面、激光刻槽埋栅、选择性发射结等,这些工艺的采用不但使电池的效率进一步提高,而且还使得电池的应用成为可能。特别在解决了诸如采用带通滤波器消除温升效应以后,这类电池的应用成了空间电源的主角。 虽然很多工艺技术是由一些研究所提出,但却是在一些比较大的公司得到了发扬光大,比如倒金子塔绒面、选择性发射结等工艺是在澳大利亚新南威尔士大学光伏研究中心出现,但日本的SHARP公司和美国的SUNPOWER公司目前的技术水平却为世界一流,有的技术甚至已经移植到了地面用太阳电池的大批量生产。 为了进一步降低电池背面复合影响,背面结构则采用背面钝化后开孔形成点接触,即局部背场。这些高效电池典型结构为PERC、PERL、PERT、PERF[1],其中前种结构的电池已经在空间获得实用。典型的高效硅太阳电池厚度为100μm,也被称为NRS/BSF(典型效率为17%)和NRS/LBSF(典型效率为18%),其特征是正面具有倒金子塔绒面的选择性发射结构,前后表面均采用钝化结构来降低表面复合,背面场采用全部或局部背场。实际应用中还发现,虽然采用局部背场工艺的电池要普遍比NRS/BSF的电池效率高一个百分点,但通常局部背场的抗辐照能力比较差。 到了上世纪90年代中期,空间电源工程人员发现,虽然这种类型电池的初期效率比较高,但电池的末期效率比初期效率下降25%左右,限制了电池的进一步应用,空间电源的成本仍然不能很好地降低。 为了改变这种情况,以SHARP为首的研究机构提出了双边结电池结构,这种电池的出现有效地提高了电池的末期效率,并在HES、HES-1卫星上获得了实际应用。 另外研究人员还发现,卫星对电池阵位置的要求比较苛刻,如果太阳电池阵不对日定向或对日定向差等都会影响到卫星电源的功率,这在一定程度上也限制了卫星整体系统的配置。比如空间站这样复杂的飞行器,有的电池阵几乎不能完全保证其充足的太阳角,因而就需要高效电池来满足要求。虽然目前已经部分应用了常规的高效电池,但电池的高的α吸收系数、有限的空间和重量的需要使其仍然不能满足空间系统大规模功率的需要。传统的电池结构仍然受到很大程度的限制。在这种情况下,俄罗斯在研究高效硅电池初期就侧重于提高电池的末期效率为主,在结合电池阵研究方面提出了双面电池的构想并获得了成功,真正做到了高效长寿命和低成本。 太阳能灯电池有12V和24V.能不能说清楚点?是太阳能家用照明还是什么?
首先确定灯的功率、每天照明时间及最长阴雨(不能充电的)天数,来确定所需要的电量容量。蓄电池选择容量时应考虑放电深度和蓄电池电压略高于负载(灯)工作电压,蓄电池工作环境情况选择蓄电池类型(铅酸或胶体)。太阳电池主要性能 电池效率 由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000 KWm-2)作为测试电池效率的标准光源。太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。 ◎ 25℃,AM0条件下太阳电池效率 电池类型 面积(cm2) 效率(%) 电池结构 一般Si太阳电池 64cm2 14.6 单结太阳电池 先进Si太阳电池 4cm2 20.8 单结太阳电池 GaAs太阳电池 4cm2 21.8 单结太阳电池 InP太阳电池 4cm2 19.9 单结太阳电池 GaInP/GaAs 4cm2 26.9 单片叠层双结太阳电池 GaInP/GaAs/Ge 4cm2 25.5 单片叠层双结太阳电池 GaInP/GaAs/Ge 4cm2 27.0 单片叠层三结太阳电池 ◎ 聚光电池 GaAs太阳电池 0.07 24.6 100X GaInP/GaAs 0.25 26.4 50X,单片叠层双结太阳电池 GaAs/GaSb 0.05 30.5 100X,机械堆叠太阳电池 空间太阳电池在大气层外工作,在近地球轨道太阳平均辐照强度基本不变,通常称为AM0辐照,其光谱分布接近5800K黑体辐射光谱,强度1353mW/cm2。因此空间太阳电池多采用AM0光谱设计和测试。 空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受限制的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。 抗辐照性能 空间太阳电池在地球大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。 太阳电池的可靠性 光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。 Si太阳电池 硅太阳电池是最常用的卫星电源,从1970年代起,由于空间技术的发展,各种飞行器对功率的需求越来越大,在加速发展其他类型电池的同时,世界上空间技术比较发达的美、日和欧空局等国家,都相继开展了高效硅太阳电池的研究。以日本SHARP公司、美国的SUNPOWER公司以及欧空局为代表,在空间太阳电池的研究发展方面领先。其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目前在轨的许多卫星应用的是这种类型的电池。 到了70年代中期,COMSAT研究所提出了无反射绒面电池(使电池效率进一步提高)。但这种电池的应用受到限制:一是制备过程复杂,避免损坏PN结;二是这样的表面会吸收所有波长的光,包括那些光子能量不足以产生电子-空穴对的红外辐射,使太阳电池的温度升高,从而抵消了采用绒面而提高的效率效应;三是电极的制作必须沿着绒面延伸,增加了接触的难度,使成本升高。 80年代中期,为解决这些问题,高效电池的制作引入了电子器件制作的一些工艺手段,采用了倒金子塔绒面、激光刻槽埋栅、选择性发射结等,这些工艺的采用不但使电池的效率进一步提高,而且还使得电池的应用成为可能。特别在解决了诸如采用带通滤波器消除温升效应以后,这类电池的应用成了空间电源的主角。 虽然很多工艺技术是由一些研究所提出,但却是在一些比较大的公司得到了发扬光大,比如倒金子塔绒面、选择性发射结等工艺是在澳大利亚新南威尔士大学光伏研究中心出现,但日本的SHARP公司和美国的SUNPOWER公司目前的技术水平却为世界一流,有的技术甚至已经移植到了地面用太阳电池的大批量生产。 为了进一步降低电池背面复合影响,背面结构则采用背面钝化后开孔形成点接触,即局部背场。这些高效电池典型结构为PERC、PERL、PERT、PERF[1],其中前种结构的电池已经在空间获得实用。典型的高效硅太阳电池厚度为100μm,也被称为NRS/BSF(典型效率为17%)和NRS/LBSF(典型效率为18%),其特征是正面具有倒金子塔绒面的选择性发射结构,前后表面均采用钝化结构来降低表面复合,背面场采用全部或局部背场。实际应用中还发现,虽然采用局部背场工艺的电池要普遍比NRS/BSF的电池效率高一个百分点,但通常局部背场的抗辐照能力比较差。 到了上世纪90年代中期,空间电源工程人员发现,虽然这种类型电池的初期效率比较高,但电池的末期效率比初期效率下降25%左右,限制了电池的进一步应用,空间电源的成本仍然不能很好地降低。 为了改变这种情况,以SHARP为首的研究机构提出了双边结电池结构,这种电池的出现有效地提高了电池的末期效率,并在HES、HES-1卫星上获得了实际应用。 另外研究人员还发现,卫星对电池阵位置的要求比较苛刻,如果太阳电池阵不对日定向或对日定向差等都会影响到卫星电源的功率,这在一定程度上也限制了卫星整体系统的配置。比如空间站这样复杂的飞行器,有的电池阵几乎不能完全保证其充足的太阳角,因而就需要高效电池来满足要求。虽然目前已经部分应用了常规的高效电池,但电池的高的α吸收系数、有限的空间和重量的需要使其仍然不能满足空间系统大规模功率的需要。传统的电池结构仍然受到很大程度的限制。在这种情况下,俄罗斯在研究高效硅电池初期就侧重于提高电池的末期效率为主,在结合电池阵研究方面提出了双面电池的构想并获得了成功,真正做到了高效长寿命和低成本。 太阳能灯电池有12V和24V.能不能说清楚点?是太阳能家用照明还是什么?
在日程的生活中会经常看到道路两旁会使用太阳能路灯作为照明工具。但是在外观看来,不会看到有储能的电池,只能看到收集太阳能的电池板,但是夜间的时候就会使用到储能电池的电量为路灯提供电能,照亮路况。因此,我们在了解太阳能路灯的时候同样需要知道储能电池的种类和它的安装和防盗。
太阳能路灯的储能电池的种类
太阳能光伏发电系统是利用光生伏打效应原理制成的太阳能电池将太阳能直接转换成电能的。太阳能电池单体是用于光电转换的最小单元。它的尺寸约4平方厘米到100平方厘米。太阳能电池单体工作电压为0.45一0.50伏,一般不能单独作为电源使用。将姗能电池单体进行串联,并联和封装后,就成为太阳能电池组件。它的功率从几瓦到几百瓦,可以单独作为电源使用。太阳能电池再经过串联,并联并装在支架上,就构成了大阳能电池方阵。它可以输出几百瓦,凡千瓦或更大的功率,是光伏电站的电能产生器。常用的太阳能电池主要是硅太阳能电池。目前世界上有三种己经商品化的硅太阳能电池:单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池。
单晶硅太阳电池是当前开发最快的一种太阳电池,它的结构和生产工艺已定型,产品已广泛用于空间和地面。这种太阳电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。单晶硅太阳能电池的制造成本最高,但光电转化效率也最高,最高的达到24%。目前多晶硅太阳电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,或用废次单晶硅材料和冶金级硅材料熔化浇铸而成,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。这种硅锭可铸成立方体,以便切片加工成方形太阳电池片,可提高材料利用率和方便组装。多晶硅太阳电池的与单晶硅太阳电池差不多,其光电转换效率约12%左右,稍低于单晶硅太阳电池,但其材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。
蓄电池的安装及防盗
为了保证蓄电池的使用寿命和防盗,依据当地地温资料,先把蓄电池放置到专用防潮地埋箱中,然后整体放置到地深1.2米处的水泥池中(水泥池净高0.5米),水泥池上面用5CM后的水泥预制板盖住,最后将水泥板钢筋与灯杆基座钢筋焊接,用土填埋并夯实。
如图所示:
根据路灯照明大小分为12伏、24伏、36伏、48V伏、72伏。
1、放置路灯的路有多宽,工作时间,连续阴雨天数,会有不同功率的太阳能路灯。
2、太阳能路灯的应用主要是靠太阳能电池板,而通常太阳能电池板的电压为17.5V和36V这两种规格,太阳能电池板的这个电压设计,分别是为12V和24V的蓄电池充电的。
3、太阳能电池板所产生的是直流电,充进蓄电池后,蓄电池出来的电压当然也是12V/24V/36V这是目前太阳能路灯当中最常用的几个规格。
4、目前市场上的太阳能路灯的光源,都是特别为太阳能电池板而设计的,所以常规电压为,12V/24V/36/这是主流,当然也有更高些的,如48V/72V等等。
可以,增加一节电池可以延长照明时间。但是一定要用与原配电池的电压相同(一般是用18650型号的锂电池,电压为3.7V)体积相同,而且必须釆用并联。这个需要打开太阳能灯具,看里面原先安装的是什么电池,可以加电池,但是必须跟原先安装的电池一样电压,一样型号。
“电不够”是不是可以理解为,太阳能电池的功率小,每天不足以充满配置的电瓶?在电瓶不亏电的情况下,灯的亮度是不会有影响的,随着电量的消耗,当电压低于灯的额定电压的时候就会影响灯的亮度了。
电话:18921928308
邮 箱:978313@qq.com
地 址:江苏省高邮市菱塘回族乡团结东路8号